Real eigenmodes of the non-Hermitian Wilson-Dirac operator and simulations of supersymmetric Yang-Mills theory

Georg Bergner ITP WWU Münster

26.10.2011 Trento

1 Supersymmetric Yang-Mills theory

- 2 SYM on the lattice
- 3 Eigenvalues of the Wilson-Dirac operator in SYM simulations
- 4 Some results for the mass spectrum

5 Conclusions

in collaboration with J. Wuilloud, U. Özugurel, G. Münster, I. Montvay, F. Farchioni, D. Sandbrink SYM

Super Yang-Mills theory (SYM)

Supersymmetric Yang-Mills theory:

$$\mathcal{L} = \operatorname{Tr}\left[-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{i}{2}\bar{\psi}\bar{\psi}\psi - \frac{m_g}{2}\bar{\psi}\psi\right]$$

- gauge sector of supersymmetric extensions of the standard model
- ψ Majorana fermion in the adjoint representation
- confinement: bound states at low energies
- symmetries: specific form of low energy effective actions

Symmetries

SUSY ($m_g = 0$)

- supersymmetry predicts paring of bosonic and fermionic states
- no spontaneous breaking / anomaly of SUSY expected
- $U_{R}(1)$ symmetry: $\psi
 ightarrow e^{-i heta\gamma_{5}}\psi$
 - $U_R(1)$ anomaly: $heta = rac{k\pi}{N_c}, \quad U_R(1) o \mathbb{Z}_{2N_c}$
 - $U_R(1)$ spontaneous breaking:

$$\mathbb{Z}_{2N_c} \stackrel{\langle \bar{\psi}\psi\rangle\neq 0}{\to} \mathbb{Z}_2$$

SYM

Conclusions

Quantized continuum SYM

- value of $\langle \bar{\psi}\psi\rangle$ is known
- exact beta function is known

Low energy effective actions:

- susy multiplets (degenerate masses)
- 1. multiplet¹:

mesons : $a - f_0$: $\bar{\psi}\psi$ and $a - \eta'$: $\bar{\psi}\gamma_5\psi$ fermionic gluino-glue $(\sigma_{\mu\nu}F_{\mu\nu}\psi)$

• 2. multiplet²: glueballs: 0⁺⁺ and 0⁻⁺ fermionic gluino-glue

¹[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

²[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

Supersymmetric Yang-Mills theory on the lattice Lattice action:

$$S_{L} = \beta \sum_{P} \left(1 - \frac{1}{N_{c}} \Re U_{P} \right) + \frac{1}{2} \sum_{xy} \bar{\psi}_{x} \left(\mathsf{D}_{w}(m_{g}) \right)_{xy} \psi_{y}$$

• "brute force" discretization: Wilson fermions

$$\begin{split} \mathsf{D}_w &= 1 - \kappa \sum_{\mu=1}^4 \left[(1 - \gamma_\mu)_{\alpha,\beta} \, \hat{T}_\mu + (1 + \gamma_\mu)_{\alpha,\beta} \, \hat{T}_\mu^\dagger \right] \\ \hat{T}_\mu \psi(x) &= V_\mu \psi(x + \hat{\mu}); \quad \kappa = \frac{1}{2(m_g + 4)} \end{split}$$

• links in adjoint representation: $(V_{\mu})_{ab} = 2 \text{Tr}[U_{\mu}^{\dagger} T^{a} U_{\mu} T^{b}]$ gauge group SU(2)

Symmetries of lattice SYM

- supersymmetry always broken in local lattice theory¹
- Wilson mass spoils mass degeneracy
- chiral symmetry $(U_R(1))$ broken by the Wilson-Dirac operator
- no controlled breaking (Ginsparg-Wilson relation)
- \Rightarrow need fine tuning!

¹[GB, JHEP 1001:024 (2010)], [Kato, Sakamoto & So, JHEP 0805:057 (2008)]

Ward identities on the lattice

Ward identities of supersymmetry and chiral symmetry:

$$\langle \nabla_{\mu} J_{S}^{\mu}(x) \mathcal{O}(y) \rangle = m_{g} \langle D_{S}(x) \mathcal{O}(y) \rangle + \langle X_{S}(x) \mathcal{O}(y) \rangle$$

$$\langle \nabla_{\mu} J_{A}^{\mu}(x) \mathcal{O}(y) \rangle = m_{g} \langle D_{A}(x) \mathcal{O}(y) \rangle + \langle X_{A}(x) \mathcal{O}(y) \rangle + \propto \langle F \tilde{F} \mathcal{O} \rangle$$

• classical (tree level): $X_S(x) = O(a)$, $X_A(x) = O(a)$ renormalization, operator mixing^{1,2}:

$$\langle \nabla_{\mu} Z_{A} J^{\mu}_{A}(x) \mathcal{O} \rangle = (m_{g} - \bar{m}_{g}) \langle D_{A}(x) \mathcal{O} \rangle + \propto \langle F \tilde{F} \mathcal{O} \rangle + O(a) \langle \nabla_{\mu} (Z_{S} J^{\mu}_{S}(x) + \tilde{Z}_{S} \tilde{J}^{\mu}_{S}(x)) \mathcal{O} \rangle = (m_{g} - \bar{m}_{g}) \langle D_{S}(x) \mathcal{O} \rangle + O(a)$$

 \Rightarrow tuning of m_g : chiral limit = SUSY limit + O(a)

¹[Bochicchio et al., Nucl.Phys.B262 (1985)]

²[Veneziano, Curci, Nucl.Phys.B292 (1987)]

Supersymmetric chiral limit

practical problems:

- noisy signal of supersymmetric Ward identies
- chiral Ward identities contain anomaly

$$\langle \bar{\psi}(x)\gamma_5\psi(x)\,\bar{\psi}(y)\gamma_5\psi(y)
angle = \langle \bigvee_x \bigvee_y - 2^x \bigvee_y \rangle$$

define connected part as adjoint pion $(a - \pi)$

- disconnected part contains anomaly (OZI approximation)
- chiral limit: $m_{a-\pi}$ vanishes
- \Rightarrow possible definition of gluino mass: $\propto (m_{a-\pi})^2$

At the end the consistency with the SUSY Ward identities is checked!

Simulations of SYM

• simulating Majorana fermions:

$$\int \mathcal{D}\psi e^{-\frac{1}{2}\int \bar{\psi} D\psi} = \mathsf{Pf}(\mathcal{C}D) = \mathsf{sign}(\mathsf{Pf}(\mathcal{C}D))\sqrt{\det D}$$
$$= \mathsf{sign}(\mathsf{Pf}(\mathcal{C}D))\int \mathcal{D}\bar{\phi}\mathcal{D}\phi e^{-\int \bar{\phi}(D^{\dagger}D)^{-1/4}\phi}$$

- reweighting with Pfaffian (Pf) sign
- PHMC algorithm: $x^{-1/4} \approx P(x)$
- improvement of the polynomial approximation: reweighting with exact contribution of smallest eigenvalues

The sign of the Pfaffian

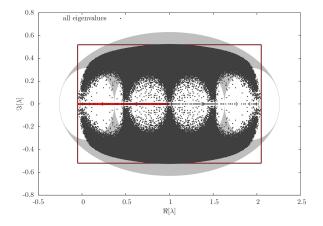
•
$$\gamma_5 \, {\sf D} \, \gamma_5 = D^\dagger \Rightarrow {\sf paring} \; \lambda, \; \lambda^*$$

- $C D C^T = D^T \Rightarrow$ degenerate eigenvalues
- $|\operatorname{Pf}(C \mathsf{D})| = \sqrt{\det(\mathsf{D})} = \prod_{i=1}^{N/2} |\lambda_i|$

•
$$|\operatorname{Pf}(C(\mathsf{D}-\sigma\mathbb{1}))| = \prod_{i=1}^{N/2} |\lambda_i - \sigma|$$

- Pfaffian polynomial in $\sigma \Rightarrow Pf(CD) = \prod_{i=1}^{N/2} \lambda_i$
- number of negative paired real eigenvalues of D even / odd
 ⇒ positive / negative Pfaffian
- on small lattices: checked with exact Pfaffian
- same problem (apart from degeneracy): determinant sign in $N_f = 1$ QCD

Obtaining the lowest real eigenvalues of D_w



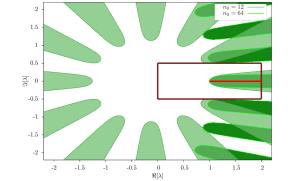
Focus the Arnoldi algorithm on small stripe around real axis!

Polynomial transformation of D_w

- reflected spectrum: largest real eigenvalues should be computed
- Arnoldi algorithm calculates eigenvalues with real part above certain value
- computed region contains large number of unwanted eigenvalues
- Two effects of transformation $D_w \rightarrow P(D_w)$:
 - focusing: better overlap of transformed wanted region with region computed by Arnoldi
 - acceleration, if eigenvalues not computed by Arnoldi compressed in a small region
 - eigenvalues of D_w obtained from eigenvectors of $P(D_w)$

Simple transformation¹ $P(D_w) = (D_w + \sigma_0 \mathbb{1})^{n_0}$ • complex eigenvalues "rotated away" from real axis: $\lambda_i = \rho_i e^{i\theta} : \quad \theta \to n_0 \theta$

• computed regions in original spectrum:

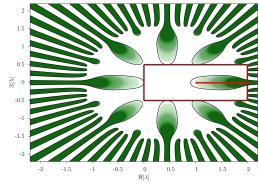


saturation at higher orders, broad outer part of computed region

¹[H. Neff, Nucl. Phys. Proc. Suppl. **106** (2002)]

The iterated transformation¹

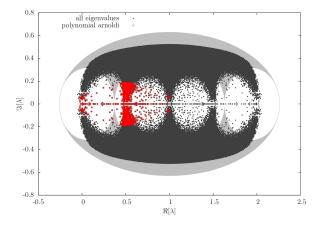
- $P(D_w) = (\dots ((D_w + \sigma_0 \mathbb{1})^{n_0} + \sigma_1 \mathbb{1})^{n_1} \dots)$ optimization at each step
- computed regions in original spectrum:



• narrow outer part of computed region!

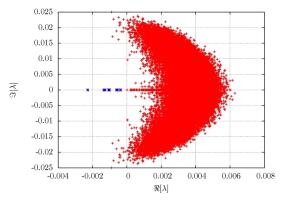
¹[GB, Wuilloud, Comp. Phys. Comm. (2011)]

Eigenvalues obtained from the iterated transformation



- avoids large eigenvalue densities
- increases efficiency

Eigenvalues of D_w ($32^3 \times 64$, $\kappa = 0.1495$, $\beta = 1.75$)



- for the determination of spectrum: low contribution with neg. Pfaffian (6 of 2000 configurations)
- additional acceleration: even-odd preconditioning

Masses and particles

considered operators:

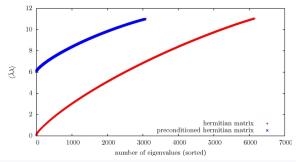
- 0++:
 - reasonable signal only with variational smearing
- fermionic gluino-glue
 - operator $\sigma^{\mu\nu} \text{Tr}[\hat{F}_{\mu\nu}\psi]$
 - $\bullet\,$ APE smearing on gauge fields and Jacobi smearing on ψ
- Meson operators $a f_0$, $a \eta'$:
 - disconnected contribution dominant at small gluino masses:

$$\langle \bigotimes_{x} \bigcirc_{y} \rangle = \langle \mathsf{D}^{-1}(x,x) \, \mathsf{D}^{-1}(y,y) \rangle_{\mathsf{eff}}$$

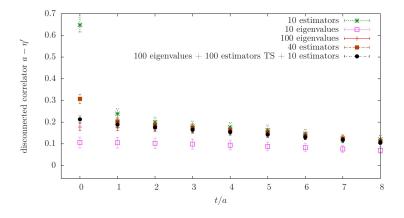
- technique: SET (dilution, truncated solver method)
- exact contribution of lowest $\gamma_5 D_w$ eigenvalues

Eigenvalues of even-odd preconditioned Hermitian Wilson-Dirac operator

- acceleration of Arnoldi algorithm: Chebyshev polynomial
- ⇒ improvement: polynomial approximation of update algorithm (reweighting)
- \Rightarrow improvement: measurement of disconnected contributions and condensate



disconnected $a - \eta'$ on a $32^3 \times 64$ lattice:



- reasonable improvement at small gluino masses
- acceleration of SET inversions

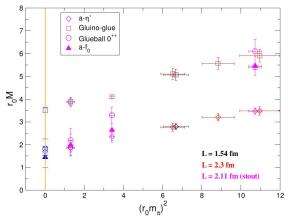
Details of the simulations

- simulation algorithm: PHMC
- tree level Symanzik improved gauge action
- stout smearing
- Sexton-Weingarten integrator
- determinant breakup

previous simulations:

- lattice sizes: 16³x32, 24³x48 (32³x64)
- $r_0 \equiv 0.5 {
 m fm} \rightarrow a \le 0.088 {
 m fm}; \ L \approx 1.5 2.3 {
 m fm}$
- $m_{a-\pi} \approx 440 \,\mathrm{MeV}$

Previous SUSY Yang-Mills results



No mass degeneracy in chiral limit! Tuning with SUSY Ward identities compatible with tuning of $m_{a-\pi}$. [Demmouche et al., Eur.Phys.J.C69 (2010)]

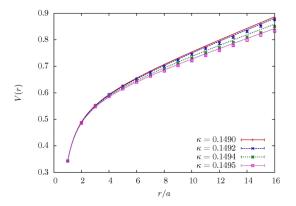
New simulations at smaller lattice spacing

Before speculating about new physics: Most likely explanation are lattice artifacts!

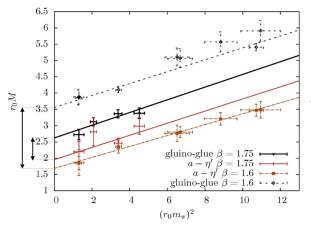
new simulations:

- volume fixed, smaller lattice spacing
- \Rightarrow increased β from 1.6 to 1.75
 - simulations on $32^3 \times 64$ lattice

Confinement and physical scale of the new simulations

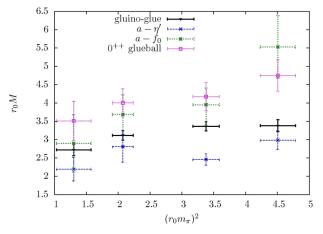


• good agreement with $V(r) = v_0 + c/r + \sigma r$ (confining) $\Rightarrow a \approx 0.057$ fm, $L \approx 1.8$ fm Comparison of the mass gap between $a - \eta'$ and gluino-glue



- mass gap considerably reduced
- gluino-glue has much lower mass

Complete spectrum obtained with the new simulations



- indicates mixing of $a f_0$ and 0^{++} glueball
- in contrast to smaller lattice spacing: $a f_0$, glueball heavier

- In supersymmetric Yang-Mills theory the unavoidable breaking of SUSY on the lattice can be controlled by a fine tuning of the gluino mass (κ).
- The sign Pfaffian can be determined from the real eigenvalues of the non-Hermitian Wilson-Dirac operator.
- Polynomial acceleration of Arnoldi algorithm leads to efficient determination of lowest real eigenvalues.¹
- The eigenvalues of the Hermitian even-odd preconditioned matrix are used to improve the algorithm and the observables.
- Possible further uses of the eigenvalue distributions ?
- The mass gap between bosonic and fermionic states is considerably reduced at a smaller lattice spacing.
- Further improvements of the action are currently investigated.

¹Same method has been applied for the determinant sign in $N_f = 1$ QCD.