The gluino-glue particle and relevant scales for the simulations of supersymmetric Yang-Mills theory

Georg Bergner ITP WWU Münster

Lattice 2012: June 27, 2012

Conclusions

1 Supersymmetric Yang-Mills theory on the lattice

2 Finite size effects and lattice artifacts

in collaboration with T. Berheide, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink

Conclusions

Super Yang-Mills theory

Supersymmetric Yang-Mills theory:

- supersymmetry transformations: bosonic field $F_{\mu\nu}$ (gluon) \leftrightarrows fermionic field ψ (gluino)
- ψ Majorana fermion in the adjoint representation
- gluino mass term $m_g \Rightarrow$ soft SUSY breaking

Motivation to study SYM theory on the lattice

Supersymmetric extension of the standard model

- gauge part of SUSY models: super Yang-Mills theory (SYM)
- non-perturbative sector important: breaking mechanism etc.

2 Connection to QCD

- orientifold planar equivalence: SYM \leftrightarrow QCD
- Remnants of SYM in QCD ?
- comparison with one flavor QCD
- Test lattice methods
 - Can SUSY be realized on the lattice ?
 - adjoint 1/2 flavor QCD

Motivation to study SYM theory on the lattice

Supersymmetric extension of the standard model

- gauge part of SUSY models: super Yang-Mills theory (SYM)
- non-perturbative sector important: breaking mechanism etc.
- Onnection to QCD
 - orientifold planar equivalence: SYM \leftrightarrow QCD
 - Remnants of SYM in QCD ?
 - comparison with one flavor QCD
- Test lattice methods
 - Can SUSY be realized on the lattice ?
 - adjoint 1/2 flavor QCD

Motivation to study SYM theory on the lattice

Supersymmetric extension of the standard model

- gauge part of SUSY models: super Yang-Mills theory (SYM)
- non-perturbative sector important: breaking mechanism etc.
- Onnection to QCD
 - orientifold planar equivalence: SYM \leftrightarrow QCD
 - Remnants of SYM in QCD ?
 - comparison with one flavor QCD
- Test lattice methods
 - Can SUSY be realized on the lattice ?
 - adjoint 1/2 flavor QCD

Low energy effective theory

confinement like in QCD \Rightarrow colorless low energy bound states

multiplet¹: multiplet²:
mesons :
$$a - f_0$$
: $\bar{\lambda}\lambda$; $a - \eta'$: $\bar{\lambda}\gamma_5\lambda$ glueballs: 0⁺⁺, 0⁻⁺
fermionic gluino-glue ($\sigma_{\mu\nu}F_{\mu\nu}\lambda$) fermionic gluino-glue

Supersymmetry

All particles of a multiplet must have the same mass (scalar, pseudoscalar, fermion).

¹[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

²[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

Supersymmetric Yang-Mills theory on the lattice Lattice action:

$$S_{L} = \beta \sum_{P} \left(1 - \frac{1}{N_{c}} \Re U_{P} \right) + \frac{1}{2} \sum_{xy} \bar{\lambda}_{x} \left(\mathsf{D}_{w}(m_{g}) \right)_{xy} \lambda_{y}$$

• "brute force" discretization: Wilson fermions

$$\begin{split} \mathsf{D}_w &= 1 - \kappa \sum_{\mu=1}^4 \left[(1 - \gamma_\mu)_{\alpha,\beta} T_\mu + (1 + \gamma_\mu)_{\alpha,\beta} T_\mu^\dagger \right] \\ T_\mu \lambda(x) &= V_\mu \lambda(x + \hat{\mu}); \quad \kappa = \frac{1}{2(m_g + 4)} \end{split}$$

links in adjoint representation: (V_μ)_{ab} = 2Tr[U[†]_μT^aU_μT^b]
explicit breaking of symmetries: chiral Sym. (U_R(1)), SUSY

Conclusions

Recovering symmetry

Ward identities of supersymmetry and chiral symmetry:

- tuning of $\kappa(m_g)$ to recover chiral symmetry ¹
- same tuning to recover supersymmetry ²

Fine-tuning:

chiral limit = SUSY limit +O(a), obtained at critical κ

determination of critical κ :

- chiral Ward identities: contain anomaly
- possible tuning: supersymmetric Ward identities
- better signal: mass of adjoint pion $(a \pi)$

 \Rightarrow definition of gluino mass: $\propto (m_{a-\pi})^2$

¹[Bochicchio et al., Nucl.Phys.B262 (1985)]

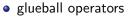
²[Veneziano, Curci, Nucl.Phys.B292 (1987)]

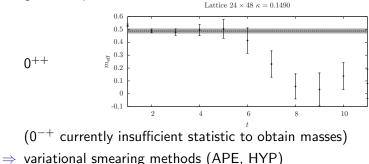
Conclusions

Details of the simulations

- path integral of Majorana fermions: $Pf(CD) = sign(Pf(CD))\sqrt{det(CD)}$
- PHMC: $\sqrt{\det(D)}$
- reweighting: sign(Pf(CD))
- reweighting factors from negative real eigenvalues of D
- improvements: tree level Symanzik improved gauge action; stout smearing

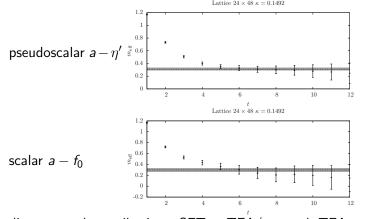
The spectrum of SYM on the lattice: bosonic operators





The spectrum of SYM on the lattice: bosonic operators

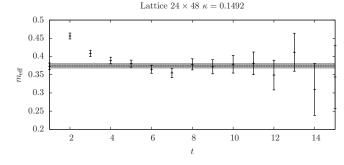
• mesons
$$\langle \bar{\lambda}(x)\gamma_5\lambda(x)\,\bar{\lambda}(y)\gamma_5\lambda(y)\rangle = \langle \bigvee_{x} \bigvee_{y} - 2^x \bigvee_{y} \rangle$$



 \Rightarrow disconnected contributions: SET + TEA/precond. TEA + TS

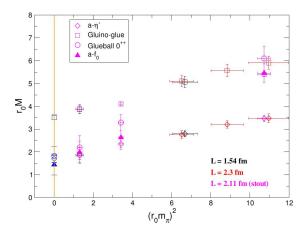
The gluino-glue particle

- gluino-glue fermionic operator $\sigma^{\mu\nu} \text{Tr}[F_{\mu\nu}\lambda]$
- $F_{\mu\nu}$ represented by clover plaquette



 \Rightarrow APE smearing on gauge fields + Jacobi smearing on λ

Mass gap at $\beta = 1.6^{-1}$



\Rightarrow estimate finite size effects and lattice artifacts

¹[Demmouche et al., Eur.Phys.J.C69 (2010)]

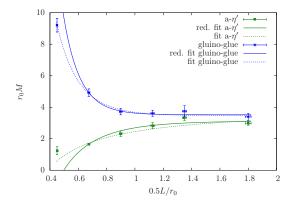
Conclusions

Estimating finite size effects

- asymptotic behavior¹ for large *L*: $m(L) \approx m_0 + CL^{-1} \exp(-\alpha m_0 L)$
- best signal: gluino-glue
- reasonable signal: $a \eta'$, but large deviation from asymptotic behavior due to systematic errors (excited states, disconnected contributions)
- simulations at lattice sizes: $8^3 \times 16$, $12^3 \times 24$, $16^3 \times 36$, $20^3 \times 40$, $24^3 \times 48$, $32^3 \times 64$
- chiral extrapolation of infinite volume limit at different $m_{a-\pi}$

¹ [Lüscher, Commun. Math. Phys. 104 (1986)], [Münster, Nucl. Phys. B 249 (1985)]

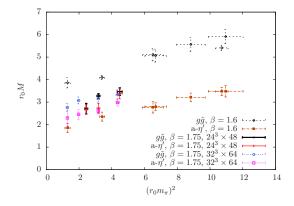
Dependence of the mass gap on the finite volume¹



- \Rightarrow finite volume effects increase mass gap
- \Rightarrow influence of finite size effects small at moderate lattice sizes

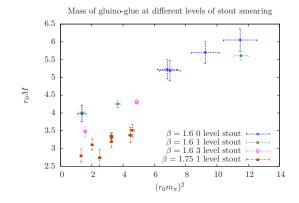
¹[GB, Berheide, Montvay, Münster, Özugurel, Sandbrink, arXiv:1206.2341]

The influence of the finite lattice spacing



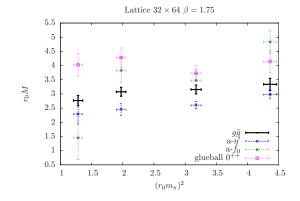
⇒ smaller lattice spacing considerably reduces the mass gap ⇒ $24^3 \times 48$ (L = 1.35fm) consistent with $32^3 \times 64$ (L = 1.8fm)

Improvements of the action



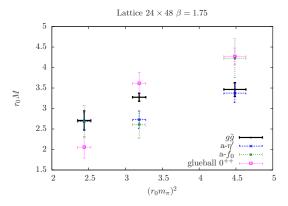
 indicates a reduction of the mass gap due to the stout smearing

The results of the mass spectrum: L = 1.8 fm



- reasonable signal for gluino-glue and $a \eta'$
- no conclusive results for the glueballs and $a f_0$

The results of the mass spectrum: L = 1.35 fm



- larger statistic at smaller lattice size
- better signal for glueballs and $a f_0$
- masses of the multiplet close to each other

Conclusions and outlook

effects that increase mass gap	relevance in current simulations
finite size effects	negligible at sizes above 1.2 fm
finite lattice spacing	considerable influence
unimproved action	reduced by stout smearing

- same influence of all of these effects: gluino-glue gets heavier than bosonic $a \eta'$
- mass splitting is already hard to measure at $\beta = 1.75$ on a $24^3 \times 48$ lattice
- most important limitation: need large statistic, especially for the scalar particles $(0^{++}, a - f_0)$
- ⇒ large statistic at moderate lattice volume to estimate the effects of further improvements (extended stout, clover)