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Supersymmetry

supersymmetry is an important guiding principle for
extensions of the standard model

fermionic operators Q

fermions (spin halfinteger) ←→ bosons (spin integer)

symmetry: [Q,H] = 0

⇒ pairing of states

supersymmetry algebra:{
Qi , Q̄j

}
= 2δijγ

µPµ, . . .
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Super Yang-Mills theory
Supersymmetric Yang-Mills theory:

L = Tr
[
−1

4
FµνFµν +

i

2
λ̄ /Dλ−mg

2
λ̄λ

]

λ adjoint Majorana fermion

mg 6= 0 SUSY softly broken

confinement

low energy effective actions

multiplet1:
mesons : a− f0: λ̄λ; a− η′: λ̄γ5λ
fermionic gluino-glue (σµνFµνλ)

multiplet2:
glueballs: 0++, 0−+

fermionic gluino-glue
1

[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]
2

[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]
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Supersymmetric Yang-Mills theory on the lattice
Lattice action:

SL = β
∑
P

(
1− 1

Nc
<UP

)
+

1

2

∑
xy

λ̄x (Dw (mg ))xy λy

“brute force” discretization: Wilson fermions

Dw = 1− κ
4∑

µ=1

[
(1− γµ)α,βTµ + (1 + γµ)α,βT

†
µ

]
Tµλ(x) = Vµλ(x + µ̂); κ =

1

2(mg + 4)

links in adjoint representation: (Vµ)ab = 2Tr[U†µT aUµT
b]

explicit breaking of symmetries: chiral Sym. (UR(1)), SUSY
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Ward identities on the lattice

Ward identities of supersymmetry and chiral symmetry:

〈∇µJµS (x)O(y)〉 = mg 〈DS(x)O(y)〉+ 〈XS(x)O(y)〉
〈∇µJµA(x)O(y)〉 = mg 〈DA(x)O(y)〉+ 〈XA(x)O(y)〉+ ∝ 〈F F̃ O〉

classical (tree level): XS(x) = O(a), XA(x) = O(a)

renormalization, operator mixing1,2:

〈∇µZAJµA(x)O〉 = (mg − m̄g )〈DA(x)O〉+ ∝ 〈F F̃ O〉+ O(a)

〈∇µ(ZSJµS (x) + Z̃S J̃S
µ

(x))O〉 = (mg − m̄g )〈DS(x)O〉+ O(a)

⇒ tuning of mg : chiral limit = SUSY limit

1
[Bochicchio et al., Nucl.Phys.B262 (1985)]

2
[Veneziano, Curci, Nucl.Phys.B292 (1987)]
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Chiral limit

〈λ̄(x)γ5λ(x) λ̄(y)γ5λ(y)〉 = 〈
x y

− 2 x y〉

connected part: adjoint pion (a− π)

disconnected part contains anomaly (OZI approximation)

chiral limit: ma−π vanishes

⇒ possible definition of gluino mass: ∝ (ma−π)2

At the end the consistency with the SUSY Ward identities is
checked!
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Specific challenges of SYM simulations

Majorana fermion leads to Pf(D) = sign(Pf(D))
√

det(D)√
det(D) using PHMC algorithm

improvement of the polynomial approximation: reweighting
factors from eigenvalues at small gluino masses

reweighting with Pfaffian sign
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Pfaffian sign = sign(
∏

real doubly degenerate eigenvalues))

efficient calculation of real eigenvalues: Arnoldi algorithm
(ARPACK) + polynomial focussing and acceleration
[G B., J. Wuilloud arXiv:1104.1363]
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eigenvalues of Dw (2000 configurations at κ = 0.1495, β = 1.75)
obtained with preconditioning and polynomial acceleration
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Observables I: Glueballs

0++: correlator of simple combination of spatial plaquettes

noisy: difficult to determine at larger ∆t

need to reduce overlap with excited states: smearing
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Observables II: Meson operators

disconnected contribution

〈
x y

〉 = 〈D−1(x , x) D−1(y , y)〉eff

dominant at small gluino masses

techniques: SET, IVST

“stochastic estimator technique” (SET)

random vectors |ηi 〉 e. g. Z4

1
N

∑N
j=1 |ηj〉〈ηj | := |ηj〉〈ηj | = 1 + O

(
1√
N

)
CG: |s j〉 = M−1|ηj〉

inverse M−1 = |s〉〈η|+ O
(

1√
N

)
⇒ improvements [Bali, Collins, Schäfer, Comput.Phys.Commun. 181 (2010)]
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Improvements of SET: dilution

sum of noisy estimators in subspaces to get complete inverse

can reduce fluctuations
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Improvements of SET: truncated solver method

large number of estimators with low precision in CG

compensate accumulated error with precise correction steps
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Improvements of SET: spectral decomposition

exact contributions of Ne lowest eigenmodes of γ5 D

noise vectors projected orthogonal to eigenspace

large improvment for a− η′ at small gluino masses

preconditioned matrix, Chebyshev acceleration

same eigenvalues can be used for reweighting factors!
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Time needed for the last three options is comparable!
(at small gluino masses)

16/24



Introduction Lattice SYM Simulations Results Conclusions

Observables III: Gluino-Glue

gluino-glue fermionic operator σµνTr[Fµνλ]

Fµν represented by clover plaquette

APE smearing on gauge fields + Jacobi smearing on λ

with combined smearing good signal compared to glueballs
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Details of the simulations

simulation algorithm: PHMC

tree level Symanzik improved gauge action

stout smearing

Sexton-Weingarten integrator

determinant breakup

previous simulations:

lattice sizes: 163x32, 243x48 (323x64)

r0 ≡ 0.5fm → a ≤ 0.088fm; L ≈ 1.5− 2.3fm
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Previous SUSY Yang-Mills results

No mass degeneracy in chiral limit!
Tuning with SUSY Ward identities compatible with tuning of
ma−π. [Demmouche et al., Eur.Phys.J.C69 (2010)]
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New simulations at smaller lattice spacing

Before speculating about new physics: Most likely explanation are
lattice artifacts!

new simulations:

volume fixed, smaller lattice spacing

⇒ increased β from 1.6 to 1.75

simulations on 323x64 lattice
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Confinement and physical scale of the new simulations

good agreement with V (r) = v0 + c/r + σr (confining)

⇒ a ≈ 0.057fm, L ≈ 1.8fm
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Comparison of the mass gap between a− η′ and gluino-glue

mass gap considerably reduced
gluino-glue has much lower mass
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Complete spectrum obtained with the new simulations

indicates mixing of a− f0 and 0++ glueball
in contrast to smaller lattice spacing: a− f0, glueball heavier
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Conclusions

In supersymmetric Yang-Mills theory the unavoidable breaking
of SUSY on the lattice can be controlled by a fine tuning of
the gluino mass (κ).

The simulations of this theory are challenging and advanced
techniques must be used to get a reasonable signal of the
observables.

The spectrum was obtained in previous simulations, but the
observed mass gap between bosonic and fermionic particles is
not in accordance with supersymmetry.

New simulations indicate that lattice artifacts are an
explanation for this gap.

Further simulations at a third, even smaller, lattice spacing
can confirm these findings.
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