Simulations of supersymmetric Yang-Mills theory

Georg Bergner ITP Westfälische-Wilhelms-Universität Münster

Lattice 2011: July 14, 2011

Introduction	Lattice SYM	Simulations	Results	Conclusions

1 Introduction

- 2 Super Yang-Mills theory on the lattice
- 3 Some techniques used in the simulations

4 Results

in collaboration with G. Münster, I. Montvay, F. Farchioni, D. Sandbrink, U. Özugurel

Supersymmetry

• supersymmetry is an important guiding principle for extensions of the standard model

fermionic operators Q

- fermions (spin halfinteger) → bosons (spin integer)
 symmetry: [Q, H] = 0
 pairing of states
 supersymmetry algebra: fermion
 - $\left\{ Q_i \,, \, \bar{Q}_j \right\} = 2\delta_{ij}\gamma^{\mu}P_{\mu}, \, \dots$

Super Yang-Mills theory

Supersymmetric Yang-Mills theory:

$$\mathcal{L} = \operatorname{Tr}\left[-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{i}{2}\bar{\lambda}\not{D}\lambda - \frac{m_g}{2}\bar{\lambda}\lambda\right]$$

- λ adjoint Majorana fermion
- $m_g \neq$ 0 SUSY softly broken
- confinement
- low energy effective actions

multiplet¹:

mesons : $a - f_0$: $\bar{\lambda}\lambda$; $a - \eta'$: $\bar{\lambda}\gamma_5\lambda$ fermionic gluino-glue $(\sigma_{\mu\nu}F_{\mu\nu}\lambda)$

¹[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]
 ²[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

multiplet²: glueballs: 0⁺⁺, 0⁻⁺ fermionic gluino-glue

Supersymmetric Yang-Mills theory on the lattice Lattice action:

$$S_{L} = \beta \sum_{P} \left(1 - \frac{1}{N_{c}} \Re U_{P} \right) + \frac{1}{2} \sum_{xy} \bar{\lambda}_{x} \left(\mathsf{D}_{w}(m_{g}) \right)_{xy} \lambda_{y}$$

• "brute force" discretization: Wilson fermions

$$\begin{split} \mathsf{D}_w &= 1 - \kappa \sum_{\mu=1}^4 \left[(1 - \gamma_\mu)_{\alpha,\beta} T_\mu + (1 + \gamma_\mu)_{\alpha,\beta} T_\mu^\dagger \right] \\ T_\mu \lambda(x) &= V_\mu \lambda(x + \hat{\mu}); \quad \kappa = \frac{1}{2(m_g + 4)} \end{split}$$

links in adjoint representation: (V_μ)_{ab} = 2Tr[U[†]_μT^aU_μT^b]
 explicit breaking of symmetries: chiral Sym. (U_R(1)), SUSY

Ward identities on the lattice

Ward identities of supersymmetry and chiral symmetry:

$$\begin{split} \langle \nabla_{\mu} J_{S}^{\mu}(x) \, \mathcal{O}(y) \rangle &= m_{g} \langle D_{S}(x) \, \mathcal{O}(y) \rangle + \langle X_{S}(x) \, \mathcal{O}(y) \rangle \\ \langle \nabla_{\mu} J_{A}^{\mu}(x) \, \mathcal{O}(y) \rangle &= m_{g} \langle D_{A}(x) \, \mathcal{O}(y) \rangle + \langle X_{A}(x) \, \mathcal{O}(y) \rangle + \propto \langle F \tilde{F} \, \mathcal{O} \rangle \end{split}$$

• classical (tree level): $X_S(x) = O(a)$, $X_A(x) = O(a)$ renormalization, operator mixing^{1,2}:

$$\langle \nabla_{\mu} Z_{A} J^{\mu}_{A}(x) \mathcal{O} \rangle = (m_{g} - \bar{m}_{g}) \langle D_{A}(x) \mathcal{O} \rangle + \propto \langle F \tilde{F} \mathcal{O} \rangle + O(a) \langle \nabla_{\mu} (Z_{S} J^{\mu}_{S}(x) + \tilde{Z}_{S} \tilde{J}^{\mu}_{S}(x)) \mathcal{O} \rangle = (m_{g} - \bar{m}_{g}) \langle D_{S}(x) \mathcal{O} \rangle + O(a)$$

 \Rightarrow tuning of m_g : chiral limit = SUSY limit

¹[Bochicchio et al., Nucl.Phys.B262 (1985)]

²[Veneziano, Curci, Nucl.Phys.B292 (1987)]

Simulations

Results

Chiral limit

$$\langle ar{\lambda}(x) \gamma_5 \lambda(x) \, ar{\lambda}(y) \gamma_5 \lambda(y)
angle = \langle igodow V_y - 2^x igodow V_y
angle$$

connected part: adjoint pion $(a - \pi)$

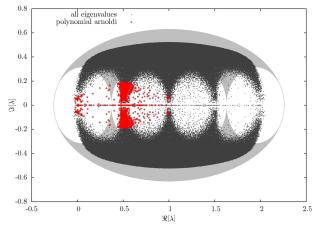
- disconnected part contains anomaly (OZI approximation)
- chiral limit: $m_{a-\pi}$ vanishes
- \Rightarrow possible definition of gluino mass: $\propto (m_{a-\pi})^2$

At the end the consistency with the SUSY Ward identities is checked!

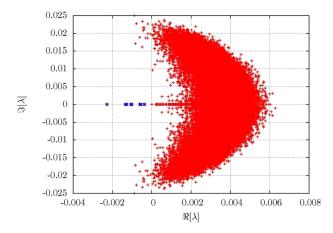
Specific challenges of SYM simulations

- Majorana fermion leads to $Pf(D) = sign(Pf(D))\sqrt{det(D)}$
- $\sqrt{\det(D)}$ using PHMC algorithm
- improvement of the polynomial approximation: reweighting factors from eigenvalues at small gluino masses
- reweighting with Pfaffian sign

Pfaffian sign = sign(\prod real doubly degenerate eigenvalues))



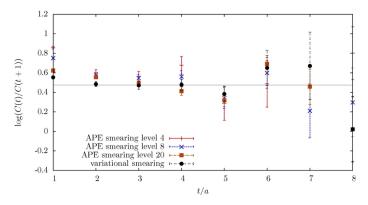
efficient calculation of real eigenvalues: Arnoldi algorithm (ARPACK) + polynomial focussing and acceleration [G B., J. Wuilloud arXiv:1104.1363]



eigenvalues of D_w (2000 configurations at $\kappa = 0.1495$, $\beta = 1.75$) obtained with preconditioning and polynomial acceleration

Observables I: Glueballs

- $\bullet \ 0^{++}:$ correlator of simple combination of spatial plaquettes
- noisy: difficult to determine at larger Δt
- need to reduce overlap with excited states: smearing



Observables II: Meson operators

disconnected contribution

$$\langle \bigotimes_{x} \bigotimes_{y} \rangle = \langle \mathsf{D}^{-1}(x, x) \, \mathsf{D}^{-1}(y, y) \rangle_{\mathsf{eff}}$$

- dominant at small gluino masses
- techniques: SET, IVST

"stochastic estimator technique" (SET)

• random vectors
$$|\eta^i\rangle$$
 e. g. \mathbb{Z}_4
 $\frac{1}{N}\sum_{j=1}^{N} |\eta^j\rangle\langle\eta^j| := \overline{|\eta^j\rangle\langle\eta^j|} = \mathbb{1} + O\left(\frac{1}{\sqrt{N}}\right)$

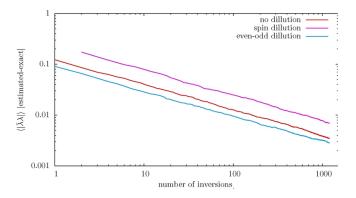
• CG: $|s^j
angle=M^{-1}|\eta^j
angle$

• inverse
$$M^{-1} = \overline{|s\rangle\langle\eta|} + O\left(\frac{1}{\sqrt{N}}\right)$$

 \Rightarrow improvements [Bali, Collins, Schäfer, Comput.Phys.Commun. 181 (2010)]

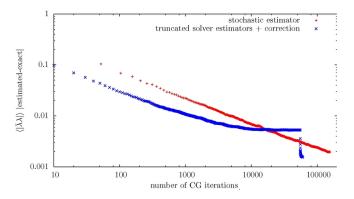
Improvements of SET: dilution

sum of noisy estimators in subspaces to get complete inversecan reduce fluctuations



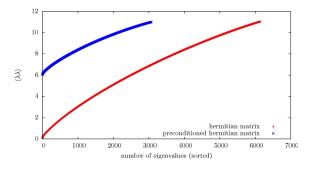
- large number of estimators with low precision in CG
- compensate accumulated error with precise correction steps

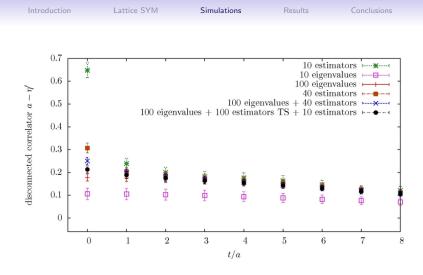
Simulations



Improvements of SET: spectral decomposition

- exact contributions of N_e lowest eigenmodes of γ_5 D
- noise vectors projected orthogonal to eigenspace
- large improvment for $a \eta'$ at small gluino masses
- preconditioned matrix, Chebyshev acceleration
- same eigenvalues can be used for reweighting factors!

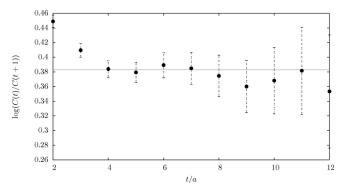




Time needed for the last three options is comparable! (at small gluino masses)

Observables III: Gluino-Glue

- gluino-glue fermionic operator $\sigma^{\mu\nu} \text{Tr}[F_{\mu\nu}\lambda]$
- $F_{\mu\nu}$ represented by clover plaquette
- APE smearing on gauge fields + Jacobi smearing on λ
- with combined smearing good signal compared to glueballs



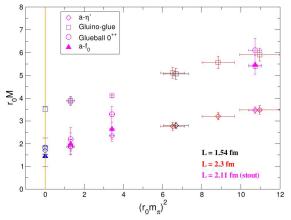
Details of the simulations

- simulation algorithm: PHMC
- tree level Symanzik improved gauge action
- stout smearing
- Sexton-Weingarten integrator
- determinant breakup

previous simulations:

- lattice sizes: 16³x32, 24³x48 (32³x64)
- $r_0 \equiv 0.5 {
 m fm} \rightarrow a \le 0.088 {
 m fm}; \ L \approx 1.5 2.3 {
 m fm}$

Previous SUSY Yang-Mills results



No mass degeneracy in chiral limit! Tuning with SUSY Ward identities compatible with tuning of $m_{a-\pi}$. [Demmouche et al., Eur.Phys.J.C69 (2010)]

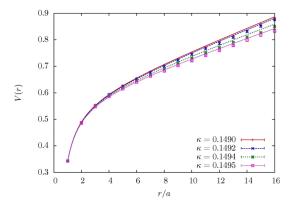
New simulations at smaller lattice spacing

Before speculating about new physics: Most likely explanation are lattice artifacts!

new simulations:

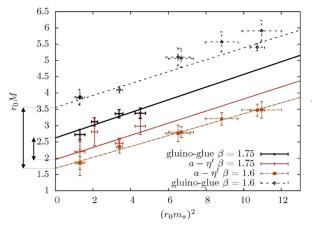
- volume fixed, smaller lattice spacing
- \Rightarrow increased β from 1.6 to 1.75
 - simulations on $32^3 \times 64$ lattice

Confinement and physical scale of the new simulations



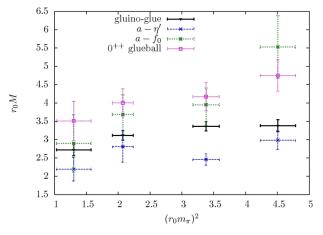
• good agreement with $V(r) = v_0 + c/r + \sigma r$ (confining) $\Rightarrow a \approx 0.057$ fm, $L \approx 1.8$ fm

Comparison of the mass gap between $a - \eta'$ and gluino-glue



- mass gap considerably reduced
- gluino-glue has much lower mass

Complete spectrum obtained with the new simulations



- indicates mixing of $a f_0$ and 0^{++} glueball
- in contrast to smaller lattice spacing: $a f_0$, glueball heavier

- In supersymmetric Yang-Mills theory the unavoidable breaking of SUSY on the lattice can be controlled by a fine tuning of the gluino mass (κ).
- The simulations of this theory are challenging and advanced techniques must be used to get a reasonable signal of the observables.
- The spectrum was obtained in previous simulations, but the observed mass gap between bosonic and fermionic particles is not in accordance with supersymmetry.
- New simulations indicate that lattice artifacts are an explanation for this gap.
- Further simulations at a third, even smaller, lattice spacing can confirm these findings.