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Introduction

Approach

effective description of finite temperature behaviour
(confined phase)

systematic derivation from the full Yang-Mills theory

Features

better access to certain regions in parameter space

tested also in heavy quark region

results for finite chemical potential possible

Further reference

talks by: J. Langelage, M. Neumann

This talk: compute/test further observables in Yang-Mills
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Effective Polyakov loop action

e−Seff[U0] =

∫
[dUi ]

∏
p

e
β
6
Tr

(
Up+U†

p

)

integrating out spatial links Ui

dimensional reduction from 3 + 1D to 3D
Uµ(x , t) → U0(x) → Polyakov lines L(x)

no complete calculation possible
⇒ organization of interactions in Seff e.g. ordered by distance

several approaches: inverse MC, demon methods [Heinzl, Kästner,

Wozar, Wipf, Wellegehausen], relative weights [Langfeld, Greensite], ...

Z =

∫
[dL]e−Seff[L]
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Effective action from strong coupling
character expansion:

e
β
6
Tr

(
Up+U†

p

)
=

∑
r∈irreps.

(1 + drar (β)χr (Up))

expansion parameter u = af (resummation)
cluster expansion

+ + −→ −→

[Polonyi, Szlachanyi]
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Effective action from strong coupling and simulations

Seff = λ1Snearest neighbors + λ2Snext to nearest neighbors + . . .

ordering principle for the interactions
higher representations and long distances are suppressed
(uNt ; u2Nt ; u2Nt+2)
effective couplings exponentiate:
λ1 = uNt exp(NtP(u)) (resummation)
collect similar terms to log (resummation)

Snearest neighbors =
∑
<ij>

(λ1<LiL∗j − (λ1<LiL∗j )2 + . . .)

=
∑
<ij>

log(1 + λ1<LiL∗j )
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Simulations of the effective theory
Non-perturbative effects from MC simulation of effective theory.

as in pure SU(3) YM: 1st order phase transition, spont.
broken centre symmetry

higher representations, long distances suppressed in
continuum limit

(λ1)c mapped back to (βc)eff → Tc

few percent difference (βc)eff to (βc)YM
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Precise test of strong coupling approach

Polyakov line correlator
〈L(~0)L†(~R)〉 good test for effective actions

related to free energy in presence of heavy quarks
〈L(~0)L†(~R)〉 = exp(−F (|~R|,T )/T )

continuum: depends only on |~R|;
lattice: dependence on the direction
(breaking of rotational symmetry)

sign for the restoration of rotational symmetry in the
continuum limit

precise check
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Polyakov loop correlator

β = 5.0, Nt = 6

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12

effective Model one coupling
full SU(3)

β = 5.4, Nt = 6
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YM strong coupling region: multilevel and mulithit algorithm

deviations close to (βc)YM; but still reasonable agreement

larger deviations in off-axis correlator

next to nearest neighbor interactions: small improvement

9/13



Intro PL correlators Thermodynamics Conclusions

Strong coupling off-axis correlator
Small λ1 behaviour: F (R/a,T )/T = d(R/a)NtC (β)

d(R/a) smallest number of lattice spacings connecting points
with distance R/a on the lattice

breaking of rotational symmetry as in strong coupling YM

no UV 1/r part at small λ1

⇒ approximates strong coupling correlators
β = 5.0, Nt = 6
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Polyakov loop correlator and continuum limit
continuum behaviour at large λ1:

effective model close to (βc)eff ↔ YM close to (βc)YM

both: restoration of rotational symmetry

YM: scaling behaviour of renormalized correlator

effective model: still need identify scaling region (
√
σ/T )

(using scale setting of YM)
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Effective theory and thermodynamics
primary observable:

d

dβ

p

T 4
= ∆S

better agreement with YM than strong coupling expansion
useful to get small T/Tc results
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Conclusions

systematic derivation of effective PL theory:
strong coupling series

non-perturbative simulations of effective theory: reasonable
agreement with full theory in confined phase in contrast to
strong coupling results

towards continuum limit higher orders in the expansion are
important

Can we identify intermediate scaling region?

2� Tc from (λ1)c
2 Polyakov loop correlators: must be outside perturbative region

of effective theory ⇒ close to (λ1)c , below certain Nt

open issue: scale setting / renormalization in effective theory

2 improved strong coupling results also for thermodynamics
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