Effective lattice theory for finite temperature Yang Mills

Georg Bergner ITP GU Frankfurt

Lattice: July 31, 2013

1 Strong coupling effective action approach

Polyakov line correlators in the effective theory

3 Thermodynamics of SU(3) effective PL theory

4 Conclusions

in collaboration with O. Philipsen, J. Langelage

Introduction

Approach

- effective description of finite temperature behaviour (confined phase)
- systematic derivation from the full Yang-Mills theory

Features

- better access to certain regions in parameter space
- tested also in heavy quark region
- results for finite chemical potential possible

Further reference

• talks by: J. Langelage, M. Neumann

This talk: compute/test further observables in Yang-Mills

Effective Polyakov loop action

$$e^{-S_{\mathrm{eff}}[U_0]} = \int [dU_i] \prod_{p} e^{\frac{\beta}{6} \mathrm{Tr} \left(U_p + U_p^{\dagger} \right)}$$

- integrating out spatial links U_i
- dimensional reduction from 3 + 1D to 3D $U_{\mu}(x,t) \rightarrow U_0(x) \rightarrow \text{Polyakov lines } L(x)$
- no complete calculation possible \Rightarrow organization of interactions in S_{eff} e.g. ordered by distance
- several approaches: inverse MC, demon methods [Heinzl, Kästner, Wozar, Wipf, Wellegehausen], relative weights [Langfeld, Greensite], ...

$$Z = \int [dL] e^{-S_{\rm eff}[L]}$$

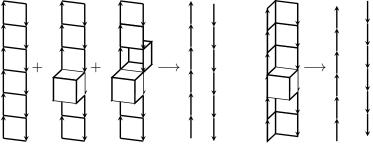
Effective action from strong coupling

• character expansion:

$$e_{6}^{\beta}\operatorname{Tr}\left(U_{p}+U_{p}^{\dagger}\right)=\sum_{r\in irreps.}\left(1+d_{r}a_{r}(\beta)\chi_{r}(U_{p})\right)$$

• expansion parameter $u = a_f$ (resummation)

cluster expansion



[Polonyi, Szlachanyi]

Effective action from strong coupling and simulations

 $S_{
m eff} = \lambda_1 S_{
m nearest \ neighbors} + \lambda_2 S_{
m next \ to \ nearest \ neighbors} + \dots$

- ordering principle for the interactions higher representations and long distances are suppressed (u^{Nt}; u^{2Nt}; u^{2Nt+2})
- effective couplings exponentiate: $\lambda_1 = u^{N_t} \exp(N_t P(u))$ (resummation)
- collect similar terms to log (resummation)

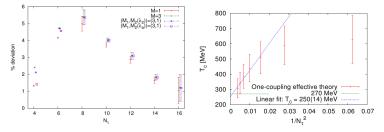
$$egin{aligned} \mathcal{S}_{\mathsf{nearest neighbors}} &= \sum_{< ij >} (\lambda_1 \Re L_i L_j^* - (\lambda_1 \Re L_i L_j^*)^2 + \ldots) \ &= \sum_{< ij >} \log(1 + \lambda_1 \Re L_i L_j^*) \end{aligned}$$

Simulations of the effective theory

Non-perturbative effects from MC simulation of effective theory.

- as in pure SU(3) YM: 1st order phase transition, spont. broken centre symmetry
- higher representations, long distances suppressed in continuum limit
- $(\lambda_1)_c$ mapped back to $(eta_c)_{ extsf{eff}} o extsf{T}_c$

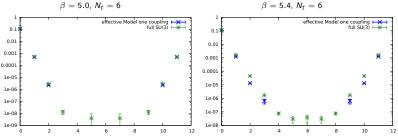
• few percent difference $(\beta_c)_{eff}$ to $(\beta_c)_{YM}$



Precise test of strong coupling approach

- Polyakov line correlator $\langle L(\vec{0})L^{\dagger}(\vec{R})\rangle$ good test for effective actions
- related to free energy in presence of heavy quarks $\langle L(\vec{0})L^{\dagger}(\vec{R})\rangle = \exp(-F(|\vec{R}|,T)/T)$
- continuum: depends only on $|\vec{R}|$; lattice: dependence on the direction (breaking of rotational symmetry)
- sign for the restoration of rotational symmetry in the continuum limit
- precise check

Polyakov loop correlator

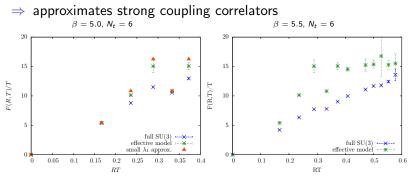


- YM strong coupling region: multilevel and mulithit algorithm
- deviations close to $(\beta_c)_{\rm YM}$; but still reasonable agreement
- larger deviations in off-axis correlator
- next to nearest neighbor interactions: small improvement

Strong coupling off-axis correlator

Small λ_1 behaviour: $F(R/a, T)/T = d(R/a)N_tC(\beta)$

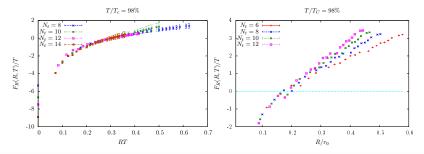
- d(R/a) smallest number of lattice spacings connecting points with distance R/a on the lattice
- breaking of rotational symmetry as in strong coupling YM
- no UV 1/r part at small λ_1



Polyakov loop correlator and continuum limit continuum behaviour at large λ_1 :

effective model close to $(\beta_c)_{\rm eff} \leftrightarrow {
m YM}$ close to $(\beta_c)_{\rm YM}$

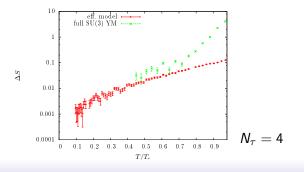
- both: restoration of rotational symmetry
- YM: scaling behaviour of renormalized correlator
- effective model: still need identify scaling region $(\sqrt{\sigma}/T)$ (using scale setting of YM)



Effective theory and thermodynamics primary observable:

$$\frac{d}{d\beta}\frac{p}{T^4} = \Delta S$$

- better agreement with YM than strong coupling expansion
- useful to get small T/T_c results



- systematic derivation of effective PL theory: strong coupling series
- non-perturbative simulations of effective theory: reasonable agreement with full theory in confined phase in contrast to strong coupling results
- towards continuum limit higher orders in the expansion are important
- Can we identify intermediate scaling region?
- \square T_c from $(\lambda_1)_c$
- □ Polyakov loop correlators: must be outside perturbative region of effective theory \Rightarrow close to $(\lambda_1)_c$, below certain N_t open issue: scale setting / renormalization in effective theory

□ improved strong coupling results also for thermodynamics