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The final goal

critical temperature: confinement → deconfinement

critical temperature: chiral symmetry restoration

properties of the phases: ε(T ), p(T ), screening length, ...
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QCD on the lattice

Z =

∫
Dφ e−S[φ] =

∫ ∏
i

dφi e
−S[φ]

discretized continuum action
non-perturbative computations
offers different expansion schemes
(“opposite of” weak coupling perturbation theory)

gauge fields
Aµ → e igaAµ = Uµ:
matter fields ψ, φ:
T = 1

Lt
= 1

aNt
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QCD on the lattice: the action

L = β
∑
p

(
1− 1

3
<(TrUp)

)
+
∑
f

ψ̄f (D[U] + mf )ψf

plaquette Up =

integral of group elements: Haar measure dU

integral of Grassmann fields: integrated out

Z =

∫ ∏
i

dUi

∏
f

det(D[U] + mf ) exp(−Sg [U])
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QCD on the lattice: fermions

∑
x

ψ̄(x)(D−m)x ,yψ(y) =
∑
x

[
(m + 4r)ψ̄(x)ψ(x)

+
1

2

∑
µ

ψ̄(x)
(
(γµ − r)Uµ(x)ψ(x + µ̂) + (γµ + r)U†µ(x − µ̂)ψ(x − µ̂)

)]

lattice Dirac operator D: derivatives replaced by gauge
invariant difference operators

hopping parameter 1 + κH with κ = 1
2m+8r

spacial (Ui ) and temporal (U0) hops

Wilson-Dirac operator: additional momentum dependent mass
term ⇒ chiral symmetry breaking

fine tuning κ→ κc : chiral continuum limit
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Confinement/Deconfinement

static quark-antiquark potential:

confinement:
linear rise at large distance r :
V (r) = − c

r + σr

deconfinement:
Yukawa type screening potential

Polyakov loop: L(x) = TrW = Tr[
∏Nt

t=0 U0(t, x)]
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Lattice QCD and finite density

Z (T , µ) = Tr(e−(H−µQ)/T )

continuum physics: extra term µψ̄γ0ψ

on the lattice modification of D

ψ̄(x)
(
(γ0 − r)eaµU0(x)ψ(x + 0̂) + (γ0 + r)e−aµU†0(x − 0̂)ψ(x − 0̂)

)
γ5D(µ)†γ5 = D(−µ∗) ⇒ det(D(µ)) = det(D(−µ∗))∗

complex determinant

all methods fail at large µ

⇒ any information about the model at finite µ is helpful,
even in unphysical limit.

⇒ need playground to test methods and find possible effects.
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Strong coupling expansion in lattice gauge theory

Z =

∫
[dUµ]

∏
p

e
β
6
Tr

(
Up+U†

p

)

expansion in β = 6/g2 (opposite to weak coupling)

similar to high temperature expansion in statistical physics

simple integration rules for products of plaquette contributions∫
dU U =

∫
dU U† = 0;

∫
dU UU† =

1

3
1
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Static quark-antiquark potential in strong coupling limit

simplest example: 〈 Wilson loop 〉

→ ∝
(
β
18

)RT

first contribution: Loop filled with plaquettes

confinement:
V (R) = − limT →∞

1
T log〈W 〉 = −σR

extension: O =
∑

n Onβ
n

in certain region convergent series
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Effective action for the Polyakov loop

e−Seff[U0] =

∫
[dUi ]

∏
p

e
β
6
Tr

(
Up+U†

p

)

integrating out spatial links
final result depends only on Polyakov lines L
dimensional reduction from 3 + 1D to 3D
Uµ(x , t) → U0(x) → L(x)
no complete calculation possible
⇒ expansion of Seff e.g. in terms of interaction distance
several ways to calculate it: inverse MC, demon methods [Heinzl,

Kästner, Wozar, Wipf, Wellegehausen], relative weights [Langfeld, Greensite], ...

Z =

∫
[dL]e−Seff[L]
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Effective action from strong coupling
character expansion:

e
β
6
Tr

(
Up+U†

p

)
=

∑
r∈irreps.

(1 + drar (β)χr (Up))

expansion parameter u = af (resummation)
cluster expansion

+ + −→ −→

[Polonyi, Szlachanyi]

13/25



Intro phases at strong coupling tests of the effective theory Conclusions

Effective action from strong coupling and simulations

Seff = λ1Snearest neighbors + λ2Snext to nearest neighbors + . . .

ordering principle for the interactions
higher representations and long distances are suppressed
(uNt ; u2Nt ; u2Nt+2)
effective couplings exponentiate:
λ1 = uNt exp(NtP(u)) (resummation)
collect similar terms to log (resummation)

Snearest neighbors =
∑
<ij>

(λ1<LiL∗j − (λ1<LiL∗j )2 + . . .)

=
∑
<ij>

log(1 + λ1<LiL∗j )
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Results in pure Yang-Mills
obtained with the effective action

observables from nonperturbative MC simulation of Seff

(resummation)

confinement/deconfinement
phase transition

mapping back to βc
⇒ Tc (continuum limit)
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Quality of the results
Next to nearest neighbors, adjoint rep. ...

... are not important for the phase transition in continuum limit.

βc relative error
effective theory
⇒ good agreement
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Quarks in the effective action

Sq = − log

[∏
f

det(D −m)

]
= −NfTr log(1− κH) = Nf

∑
l

κl

l!
TrH l

⇒ truncate hopping parameter expansion
simplest contributions (no spacial hops):
single Polyakov lines (L,L∗)
integrating out spacial links in strong coupling expansion
resummation exp(−Sq) →

∏
x det()∏

x

det((1 + hW (x))(1 + h̄W ∗(x)))2Nf

=
∏
x

[
(1 + hL(x) + h2L∗(x) + h3)(1 + h̄L∗(x) + h̄2L(x) + h̄3)

]2Nf

[de Pietri, Feo, Seiler, Stamatescu]
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Quarks in the effective action
general form of the action∑

i

λiSsymm.i +
∑
i

hiSasymm.i +
∑
i

h̄iS
†
asymm.i

center symmetric part of the action similar to pure Yang-Mills

fermions introduce asymmetric contributions

finite µ introduces factor e±aµ for temporal up/down hops
⇒ h 6= h̄

h(µ) = h̄(−µ) ⇒ sign problem

sign problem is mild (reweighting works in large region)

alternative algorithm: Worm algorithm

alternative algorithm: complex Langevin
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Quarks to the effective action
complicated pattern at higher order

quark lines building up plaquette like objects

⇒ λ(β, κ) (shift of β)

plaquette contributions to quark lines

⇒ h(κ, β)

interaction between quark lines

⇒ LiLj interaction
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Results with quark matter and finite density

reproduce phase transition in heavy quark limit

phase transition at
finite densities
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Results with quark matter and finite density

Nuclear transition:

⇒ limited to mB ≈ 30 GeV
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Further test of this program

Polyakov line correlator
〈L(~0)L†(~R)〉 good test for effective actions

related to static quark potential
〈L(~0)L†(~R)〉 = exp(−V (|~R|,T )/T )

continuum: depends only on |~R|;
lattice: dependence on the direction
(breaking of rotational symmetry)

sign for the restoration of rotational symmetry in the
continuum limit

precise check [Greensite, Langfeld];
some nonperturbative methods might fail
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Test for the diagonal correlator

β = 5.0
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results obtained with Multilevel and Mulithit algorithm

to include strong coupling region:
need error below 10−9

deviations close to critical β; but still reasonable agreement
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Test for the off diagonal correlator

β = 5.0
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off diagonal terms remain closer to strong coupling behavior

less restoration of rotational symmetry

small improvement with next to nearest neighbor interactions

need more information about continuum limit
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Conclusions and outlook

effective theories can be derived from a strong coupling series

includes explicit ordering principle,
higher orders suppressed with smaller β, larger Nt

reproduce phase transitions of pure Yang-Mills theory

quarks included in hopping parameter expansion

most important current limitation:
truncation of the κ series
⇒ higher orders included

limits Nt for the confinement/deconfinement transition

precise check: L correlator

need to understand the suppression of the interactions at
larger distances in the continuum limit
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