Supersymmetry on the lattice and simulations of supersymmetric Yang-Mills theory

Georg Bergner ITP GU Frankfurt

Heidelberg: Jan 12, 2013

Lattice SUSY	SYM	LSYM	Results	Conclusions
--------------	-----	------	---------	-------------

- 2 Supersymmetric Yang-Mills theory
- 3 Supersymmetric Yang-Mills theory on the lattice
- 4 Some results of SYM simulations

5 Conclusions

In collaboration with I. Montvay, G. Münster, U. D. Ozugurel, S. Piemonte, D. Sandbrink

Lattice SUSY	SYM	LSYM	Results	Conclusions
--------------	-----	------	---------	-------------

Supersymmetry

$$\left\{ \mathbf{Q}_{i}\,,\,\,\mathbf{\bar{Q}}_{j}
ight\} =2\delta_{ij}\gamma^{\mu}\mathbf{P}_{\mu}$$

- fermions $\stackrel{SUSY}{\rightleftharpoons}$ bosons
- degeneracy of bosonic and fermonic states; mass degeneracy
- only non-trivial interplay between internal symmetries and space-time symmetry
- spontaneous SUSY breking only if Witten index $\Delta = n_B^{E=0} n_F^{E=0}$ is zero
- Lebniz rule essential: $\partial(fg) = (\partial f)g + f(\partial g)$

The lattice

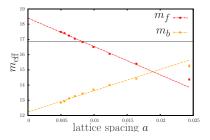
- discretize, cutoff in momentum space
- (controlled) breaking of space-time symmetries
 ⇒ uncontrolled SUSY breaking
- derivative operators replaced by difference operators with no Leibniz rule
 - \Rightarrow breaks SUSY
- fermonic doubling problem, Wilson mass term
 ⇒ breaks SUSY
- gauge fields represented as link variables
 ⇒ different for fermions and bosons
- Nielsen-Ninomiya theorem: No-Go for (naive) lattice chiral symmetry

The lattice

- discretize, cutoff in momentum space
- (controlled) breaking of space-time symmetries
 ⇒ uncontrolled SUSY breaking
- derivative operators replaced by difference operators with no Leibniz rule
 - \Rightarrow breaks SUSY
- fermonic doubling problem, Wilson mass term
 ⇒ breaks SUSY
- gauge fields represented as link variables
 ⇒ different for fermions and bosons
- Nielsen-Ninomiya theorem: No-Go for (naive) lattice chiral symmetry

No-Go theorem for lattice supersymmetry

- No way to realize (naive) supersymmetry on the lattice!
- like Nielsen-Ninomiya theorem¹: locality contradicts with SUSY
- general No-Go even without Wilson mass or gauge fields !



¹[Kato, Sakamoto, So, JHEP 0805 (2008)], [GB, JHEP 1001 (2010)]

Ginsparg-Wilson relation

- solution for chiral symmetry: Ginsparg-Wilson relation
- modified symmetry relation: $\bar{\gamma}_{5,def} D + D\gamma_{5,def} = 0$ replaces naive symmetry: $\{\gamma_5, D\} = 0$
- resembles relevant properties of the symmetry on the lattice
- derivation based on a renormalization group step (integrating out the continuum degrees of freedom)

$$e^{-S_L[\phi]} = \int d\varphi \, e^{-R[\varphi,\phi]-S[\varphi]}$$

Generalized Ginsparg-Wilson relation¹

$$M_{nm}^{ij}\phi_{m}^{j}\frac{\delta S_{L}}{\delta\phi_{n}^{i}} = (M\alpha^{-1})_{nm}^{ij}\left(\frac{\delta S}{\delta\phi_{m}^{j}}\frac{\delta S_{L}}{\delta\phi_{n}^{i}} - \frac{\delta^{2}S_{L}}{\delta\phi_{m}^{j}\delta\phi_{n}^{i}}\right)$$

- naive lattice symmetry generator M
- deformed regulator dependent rhs. $R[\varphi, \phi] = \frac{1}{2}(\phi - \Phi[\varphi])\alpha(\phi - \Phi[\varphi])$
- general relation for any symmetry, but space-time symmetry and SUSY introduces non-locality
- non-polynomial solutions

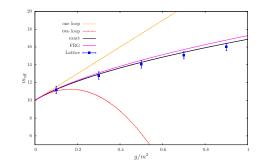
¹[GB, Bruckmann, Pawlowski, Phys. Rev. D 79 (2009)], [GB, Bruckmann, Echigo, Igarashi, Pawlowski, Schierenberg, arXiv:1212.0219]

Conclusions

Lattice supersymmetry

- no general solution for Lattice SUSY; only model dependent solutions
- problem solved¹
 in low dimensions
- FRG alternative non-perturbative method²

¹[Golterman,Petcher Nucl. Phys. B319 (1989)], [Catterall, Gregory, Phys. Lett. B 487 (2000)], [Giedt, Koniuk, Poppitz, Yavin, JHEP 0412 (2004)], [G.B, Kästner, Uhlmann, Wipf, Annals Phys. 323 (2008)], [Baumgartner, Wenger, PoS LATTICE 2011],... ²[Synatschke, GB, Gies, Wipf, JHEP03 (2009)]



Super Yang-Mills theory

Supersymmetric Yang-Mills theory:

$$\mathcal{L} = \operatorname{Tr}\left[-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{i}{2}\bar{\psi}\bar{\psi}\psi - \frac{m_g}{2}\bar{\psi}\psi\right]$$

- supersymmetric counterpart of Yang-Mills theory; but in several respects similar to QCD
- $\bullet \ \psi$ Majorana fermion in the adjoint representation

Supersymmetric Yang-Mills theory: **Symmetries**

SUSY

• gluino mass term $m_{g} \Rightarrow$ soft SUSY breaking

 $U_R(1)$ symmetry, "chiral symmetry": $\psi \to e^{-i\theta\gamma_5}\psi$

- $U_R(1)$ anomaly: $\theta = \frac{k\pi}{N_c}$, $U_R(1) \rightarrow \mathbb{Z}_{2N_c}$
- $U_R(1)$ spontaneous breaking: $\mathbb{Z}_{2N_c} \stackrel{\langle \bar{\psi}\psi
 angle \neq 0}{
 ightarrow} \mathbb{Z}_2$

Supersymmetric Yang-Mills theory: effective actions

symmetries + confinement \rightarrow low energy effective theory

- $\bullet\,$ exact value of $\langle\bar\psi\psi\rangle$
- exact beta function
- low energy effective actions:

 multiplet¹:
 mesons : a f₀ and a η'
 fermionic gluino-glue
 multiplet²:
 glueballs: 0⁺⁺ and 0⁻⁺

fermionic gluino-glue

¹ [Veneziano, Yankielowicz, Phys.Lett.B113 (1982)] ² [Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

Conclusions

Supersymmetric Yang-Mills theory: effective actions

symmetries + confinement \rightarrow low energy effective theory

- $\bullet\,$ exact value of $\langle\bar\psi\psi\rangle$
- exact beta function
- low energy effective actions:

 multiplet¹:
 mesons : a f₀ and a η'
 fermionic gluino-glue
 multiplet²:
 glueballs: 0⁺⁺ and 0⁻⁺
 - fermionic gluino-glue

Supersymmetry

All particles of a multiplet must have the same mass.

 ¹ [Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]
 ² [Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

Why study supersymmetric Yang-Mills theory on the lattice ?

- extension of the standard model
 - gauge part of SUSY models
 - non-perturbative sector important: check effective actions etc.
- extension of the standard model
 - SUSY: adjoint 1/2 flavor QCD
 - technicolor: adjoint 1 flavor QCD
- Onnection to QCD
 - orientifold planar equivalence: SYM \leftrightarrow QCD
 - Remnants of SYM in QCD ?
 - comparison with one flavor QCD

Supersymmetric Yang-Mills theory on the lattice Lattice action:

$$S_{L} = \beta \sum_{P} \left(1 - \frac{1}{N_{c}} \Re U_{P} \right) + \frac{1}{2} \sum_{xy} \bar{\psi}_{x} \left(\mathsf{D}_{w}(m_{g}) \right)_{xy} \psi_{y}$$

• Wilson fermions:

$$\begin{split} \mathsf{D}_{\mathsf{w}} &= 1 - \kappa \sum_{\mu=1}^{4} \left[(1 - \gamma_{\mu})_{\alpha,\beta} T_{\mu} + (1 + \gamma_{\mu})_{\alpha,\beta} T_{\mu}^{\dagger} \right] \\ \text{gauge invariant transport: } &T_{\mu} \psi(x) = V_{\mu} \psi(x + \hat{\mu}); \\ &\kappa = \frac{1}{2(m_g + 4)} \end{split}$$

• links in adjoint representation: $(V_{\mu})_{ab} = 2 \text{Tr}[U_{\mu}^{\dagger} T^{a} U_{\mu} T^{b}]$

Wilson fermions:

• explicit breaking of symmetries: chiral Sym. $(U_R(1))$, SUSY fine tuning:

• add counterterms to action

• tune coefficients to obtain signal of restored symmetry special case of SYM:

- tuning of m_g enough to recover chiral symmetry ¹
- same tuning enough to recover supersymmetry ²

¹[Bochicchio et al., Nucl.Phys.B262 (1985)]

²[Veneziano, Curci, Nucl.Phys.B292 (1987)]

Recovering symmetry

Fine-tuning:

chiral limit = SUSY limit +O(a), obtained at critical $\kappa(m_g)$

 no fine tuning with Ginsparg-Wilson fermions (overlap/domainwall) fermions³; but too expensive

practical determination of critical κ :

- limit of zero mass of adjoint pion $(a \pi)$
- \Rightarrow definition of gluino mass: $\propto (m_{a-\pi})^2$

³[Fleming, Kogut, Vranas, Phys. Rev. D 64 (2001)], [Endres, Phys. Rev. D 79 (2009)], [JLQCD, PoS Lattice 2011]

The sign problem in supersymmetric theories

- $Z \propto \Delta$ (periodic boundary conditions)
- $\Delta=0$ from fluctuating sign of fermion path integral
- Majorana fermions:

٠

$$\int \mathcal{D}\psi e^{-\frac{1}{2}\int \bar{\psi}D\psi} = \mathsf{Pf}(\mathcal{CD}) = \mathsf{sign}(\mathsf{Pf}(\mathcal{CD}))\sqrt{\det D}$$

 \Rightarrow severe sign problem if spontaneous SUSY breaking possible¹

¹[Wozar, Wipf, Annals Phys. 327 (2012)], [Wenger]

The sign problem in SYM on the lattice

- continuum $SU(N_c)$ SYM theory: $\Delta = N_c$
- ⇒ no sign problem in the continuum or with Ginsparg-Wilson fermions
 - Wilson fermions: sign problem even in SYM
 - reweighting: sign(Pf(CD))
 - vanishes in continuum limit, not severe; but technical problem: Pf computation

The sign problem in SYM on the lattice

- continuum $SU(N_c)$ SYM theory: $\Delta = N_c$
- ⇒ no sign problem in the continuum or with Ginsparg-Wilson fermions
 - Wilson fermions: sign problem even in SYM
 - reweighting: sign(Pf(CD))
 - vanishes in continuum limit, not severe; but technical problem: Pf computation

Status of the simulations

- main focus: mass-spectrum of SYM
- gauge group SU(2), adjoint: SO(3)
- simulations similar to $N_f = 1 \text{ QCD } (SU(3))$
- PHMC: approximate | Pf(CD)|
- improvements to reduce lattice artifacts: tree level Symanzik improved gauge action; stout smearing

Non-perturbative investigations on the lattice

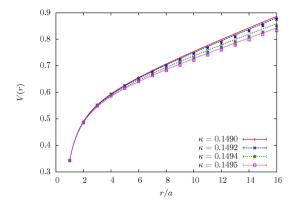
confinement

• same mass for particles of multiplet

	multiplet 1	multiplet 2
scalar	meson $a-f_0$	glueball 0 ⁺⁺
pseudoscalar	meson a $-\eta'$	glueball 0^{-+}
fermion	gluino-glue	gluino-glue

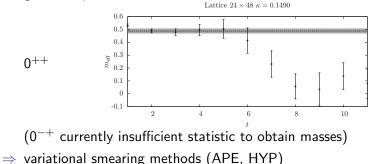
Lattice SUSY SYM LSYM Results	Conclusions
-------------------------------	-------------

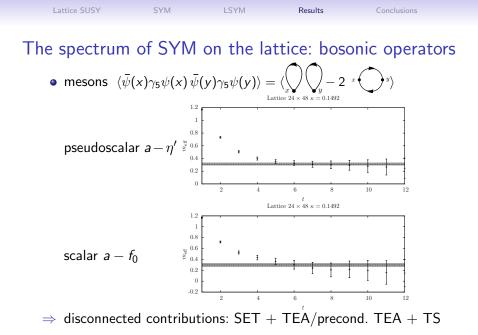
Confinement and the static quark-antiquark potential



• good agreement with $V(r) = v_0 + c/r + \sigma r$ (confining) \Rightarrow sets the scale to compare with QCD/YM simulations

The spectrum of SYM on the lattice: bosonic operators



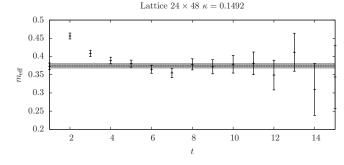


23/31

Results

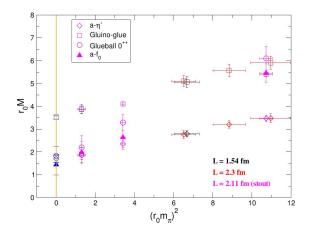
The gluino-glue particle

- gluino-glue fermionic operator $\sigma^{\mu\nu} \text{Tr}[F_{\mu\nu}\psi]$
- $F_{\mu\nu}$ represented by clover plaquette



 \Rightarrow APE smearing on gauge fields + Jacobi smearing on ψ

Mass gap at $\beta = 1.6^{-1}$



\Rightarrow unexpected mass gap

¹[Demmouche et al., Eur.Phys.J.C69 (2010)]

Lattice SUSY SYM LSYM Results Conclusions

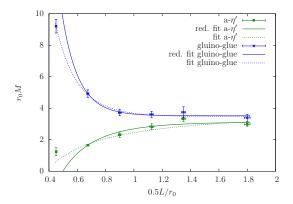
Estimating finite size effects

- asymptotic behavior¹ for large *L*: $m(L) \approx m_0 + CL^{-1} \exp(-\alpha m_0 L)$
- best signal: gluino-glue
- reasonable signal: $a \eta'$, but large deviation from asymptotic behavior due to systematic errors (excited states, disconnected contributions)
- simulations at lattice sizes: $8^3 \times 16$, $12^3 \times 24$, $16^3 \times 36$, $20^3 \times 40$, $24^3 \times 48$, $32^3 \times 64$
- chiral extrapolation of infinite volume limit at different $m_{a-\pi}$

¹ [Lüscher, Commun. Math. Phys. 104 (1986)], [Münster, Nucl. Phys. B 249 (1985)]

Lattice SUSY SYM LSYM Results

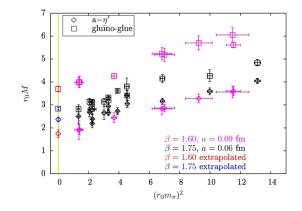
Dependence of the mass gap on the finite volume¹



- \Rightarrow finite volume effects increase mass gap
- ⇒ influence of finite size effects small at moderate lattice sizes

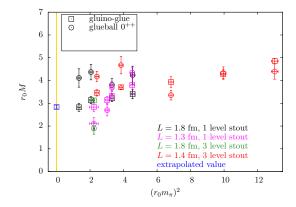
¹[GB, Berheide, Montvay, Münster, Özugurel, Sandbrink, arXiv:1206.2341]

The influence of the finite lattice spacing



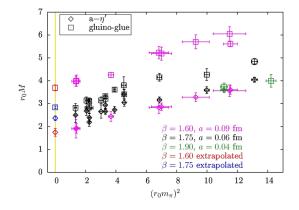
 $\Rightarrow\,$ smaller lattice spacing considerably reduces the mass gap

Results



- still difficult to determine glueballs and $a f_0$
- masses of the multiplet close to each other

Final explanation for the mass gap (?)



⇒ very preliminary results for the finest lattice (need further investigations)

- effects that increase the mass gap (gluino-glue gets heavier than bosonic $a \eta'$)
 - finite size effects: negligible at sizes above 1.2 fm
 - Inite lattice spacing: most relevant influence
- first preliminary indications that the gap might be due to lattice artifacts
- most important current concern is large noise, especially for the scalar particles $(0^{++}, a f_0)$
- \Rightarrow large statistic at moderate lattice volume
- \Rightarrow clover improvement under investigations